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Abstract. Log-periodic amplitudes of the surface magnetization are calculated analytically for
two Ising quantum chains with aperiodic modulations of the couplings. The oscillating behaviour
is linked to the discrete scale invariance of the perturbations. For the Fredholm sequence, the
aperiodic modulation is marginal and the amplitudes are obtained as functions of the deviation
from the critical point. For the other sequence, the perturbation is relevant and the critical
surface magnetization is studied.

1. Introduction

The possible occurrence of log-periodic critical amplitudes in systems with a discrete scale
invariance has been known since the early days of the renormalization group in statistical
mechanics [1-3].

Under length rescaling by a factor bf in the case of a one-parameter renormalization
group, the linearized recursion relation for the singular part of some obserFab)eakes
the form

1
Fsing(0) = ;Fsing(ﬂe) (1.1)

wherea and i depend on the dilatation factér Looking for a power-law solution under

the form Fsing(6) = A(0)6*, one obtainst = Ina/Inu and A(@) = A(ud). The condition

on the amplitude is satisfied by a periodic function ob Iwith period Inu. When the

scale invariance is continuous,remains arbitrary and cannot enter the amplitude which
then reduces to a constant. In contrast, with a discrete scale invariance a dependence
on the fixed scaling factor is allowed and the amplitude may be log-periodic. Such a
behaviour may be ascribed to complex exponents since a Fourier component may be written
as Ré0 ¥} = cogx’ In6)6*.

Oscillating amplitudes indeed appear in systems with built-in discrete scale invariance.
One may mention low-dimensional dynamical models for the transition to chaos [4-8], wave
propagation on discrete fractals [9], superconductive transitions on Sierpinsky networks [10]
and spin systems on hierarchical lattices [11].

More recently, the same behaviour has also been observed in systems like fracture
in heterogeneous media [12], foreshock activity preceding major earthquakes [13] and
diffusion-limited aggregation [14], where the discrete scale invariance is not apparent. Such
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log-periodic modulations might be of great practical importance in refining the prediction
of earthquakes [13, 15].

The purpose of the present work is to study analytically such oscillating amplitudes
which appear in the surface critical behaviour of aperiodic Ising quantum chains with
Hamiltonian

o0
H=-3> [of + oo 4] A = Arli (1.2)
k=1
where theo;s are Pauli spin operators,is the unperturbed coupling amdthe modulation
amplitude of the couplings. The aperiodic sequente~= 0 or 1, is generated via an
inflation rule, leading to a discrete scale invariance for the modulation.

Previous work on spin systems involved a linear approximation for the recursion
relation (1.1), leading to errors of several decades in the oscillation amplitudes [11]. Here
the recursion can be treated without any approximation and we obtain exact results for the
log-periodic amplitude of the surface magnetization with two different modulations. We
first complete the study of a marginal sequence for which the leading critical behaviour is
known [16]. Then we consider a relevant aperiodic modulation, leading to a non-vanishing
surface magnetization at the bulk critical point.

2. Marginal surface magnetization: the generalized Fredholm sequence

The generalized Fredholm sequence, which is the characteristic sequence of the powers of
m, follows from substitutions on the letters, B andC:

A—S(A)=ABCC...C

B—SB)=BCCC...C

C—>S8(C)=Ccccc...C.
— ———

m
With words of lengthvn = 2, one recovers the usual Fredholm substitution [17]. Starting
with A and associating, = 0to A andC and f; = 1 to B, for m = 2, one obtains the
sequence

2.1)

0110100010000000100Q0.. (2.2)

More generally,f; = 1 whenk = m” + 1 so thatn; = Y ;_; fx satisfies the recursion
relationn,,;+4 = niy1+1 (¢ = 1, m; ny = 0) which can be iterated to give, ~ InL. The
density of perturbed couplingsa, /L, vanishes asymptotically: the Fredholm aperiodicity

is a surface-extended perturbation which does not affect the bulk critical properties of the
system [16]. The critical coupling, in particular, remainsiat= 1.

A heuristic scaling argument has been developed recently by Luck [18], extending
to aperiodic perturbations the Harris criterion for random systems [19]. According to
Luck’s criterion, the relevance of the perturbation is governed by the crossover exponent
¢ = 1+ v(w — 1) which involves the correlation length exponentequal to 1 for the
d = 1+ 1 Ising model) and the wandering exponentf the aperiodic sequence [20, 21].
For the Fredholm sequence, = 0 so that¢p = O and the perturbation is marginal: the
surface exponents vary continuously with the modulation amplitufdes].

The surface magnetizations may be expressed as a series involving products of the
couplingsi; [22]

ms = (1 + i‘ ﬁ xkz)_m (2.3)

j=1lk=1
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which may be rewritten as
ms =[S, N SGr)=) AHr? no=0. (2.4)
j=0

With T(x,r) = S(, r) — 1 — A2, the following recursion is obtained [16]:
AW =DTOr)=r 22 =272 +r 202" = DT ", r). (2.5)

In the recursion process, is changed intaR[A] = ™. Definingd = In A2, one obtains a
linear renormalization in the new variable:

R[0] = m6 . (2.6)

One may notice thad is a natural variable in the problem since, with= 1, it gives the
deviation from the critical point:

2 2
ES S E e

With the new variable and
F©O) =€ — 1T r) 0O) =r2(e? —e™) (2.8)
the recursion relation (2.5) reads

oo
F(0) = ¢(0) +r 2F(m0) = Zr*%(mfe) (2.9)
j=0
where the last expression follows from the iteration process.
Making use of the expansion

S ok D k
9O = wb" = riA-mb (210)
k=1

k!

after a straightforward calculation [3] reproduced in appendix A, one obta{is as the
sum of a regular and a singular part:

F(Q) = Freg(e) + Fsing(g)

- or0*

Freq(0) = _ vk

e k; 1—r=2mt (2.11)

+00 ) )

Fsing®) = Y r ¥ prem(m!0) = r 2 Fsing(m0)
j=—00

where

- X < Inr2

Prem(0) = ;goke n (2.12)

The singular part, which has the form given in (1.1) with= > and u = m, behaves
as
_n r2
" Inm
where, according to equations (2.4), (2.5) and (2.7), (2.8), the expanisntelated to the
surface magnetization exponefy through [16]

1—x 1 Inr
= = - 2.14
Ps 2 2 Inm (2.14)

Fsing(0) = A(6)6* x

(2.13)
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when Fsing(6) provides the leading contribution #8(0), i.e. whenx < 1 (see below).
The amplitudeA(9), which is log-periodic ir9 with period Inm, may be written as the
Fourier expansion

s _Ino = ; ;
AO) = Z A exp<27T|S|nm> =0 Z r_zjfprem(mje) . (2-15)
§=—00 J=—00

The last relation can be inverted and after some algebra, the Fourier coefficients are obtained
as [3]
1 +00 _
Ay = / Oy =L 2ris/nm g, () (2.16)
Inm 0

The system displays two different regimes depending on the value of the modulation
amplituder.

Whenr > r. = /m, from (2.13) one obtaing > 1 and the regular part in (2.11)
gives a leading contribution t&' () which is linear ing. This linear term corresponds to
a 0-independent leading contribution (), r) according to (2.8) and

SO.r) =2+ 27 L A@e 100, (2.17)

re—m

It follows that there is surface order at the critical point withi, ~ (r — o)/ and a
first-order surface transition [16]. The deviation from the critical magnetization behaves as
6~ with an oscillating amplitude fot/m < r < m and is linear inp above.

Whenr takes the formn”/? so thatx is equal to the integer, a logarithmic behaviour
is obtained. This is the case in particularratwhen the surface transition changes from
first to second order. Let us write= n — e and extract fromFeq(6) the termk = n which
is now singular, so that

F(0) = Floy(60) — " + A0)0"(L—€lnb). (2.18)
elnm
The leading contribution to the amplitude(®) comes fromAy, the first term ingrem(u)
leading to a singular contribution at the lower limit in (2.16). Introducing a cut-offat
one obtains

90 96
Ao ~ I‘p" / duu~tre = ¥ 70 (2.19)
nm Jo |nm €
which finally gives
! n Ine n
F(0) = Flog(0) — ¢ i+ oM. (2.20)

As a consequence, & the magnetization vanishes as

mInm\Y? _12
mg = (m 1) (=1no) +01). (2.21)

When 1< r < r¢, which corresponds to @ x < 1, the remainder starts on= 1 and
sincegg in (2.10) vanishes, we haugem(0) = ¢(0). Insertinge(9) given by (2.8) in the
amplitudeA; in (2.16), after an integration by parts, one obtains
+00 N /+oo & r—2(me—mu _ e—Lt)u-—x—erix/lnm

0 Inr2 4 2ris

r—Z(e—mu _ e—u)u—x—ZTris/lnm

Ay =

Inr2 4 27is 0

2.22
1—p2 Inr—2 — 27is ( )
Inr2 4 27is Inm
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Figure 1. Variation of the leading amplituddo with  Figure 2. Log-periodic amplitudeA(9) as a function
the modulation amplitude for the Fredholm sequence of the deviation from the critical coupling), = In 22,
with m = 2. It diverges atr. = /2 when the for the Fredholm sequence with = 2. The oscillation
surface transition changes from second to first ordeamplitude is quickly decreasing whenincreasesr =
(see equation (2.19)). 0.5,0.6,0.7,0.8).

The oscillating amplitudes involve the Euler gamma function of a complex argurieint
In this regime, as well as for smaller valuesrothe behaviour of the surface magnetization
is governed byFsing(9). It gives a contributiord*~* to S which is divergent at the critical
point. The surface transition is second order and the magnetization exponent is given by
(2.14).

Finally whenr < 1, x < 0, n = 0 and once moreem(d) = ¢(6). The leading power
6* has an oscillating amplitude and one obtains

-2

+o00
A. = L / du(e—u _ e—mu)u—l—x—Znis/Inm
s |nm 0

r2-1 Inr—2 — 2xis
Inm Inm

Explicit expressions for the oscillating amplitudes are given in appendix B. The
behaviour of Ap as a function ofr for the Fredholm sequence withh = 2 is shown
in figure 1 whereas the log-periodic oscillations are shown in figure 2 for different values
of the modulation amplitude.

(2.23)

3. Critical surface magnetization with a relevant aperiodic sequence

We now consider a sequence generated through substitution on the digits 1 and 0 with

/—L
1581 =11...10...0
0— S(0)=000...000. (3.1)
P

Starting on 1 withp = 3 andm = 2, the substitution process generates the following
sequence:

1101100001101100000Q0.. (3.2)
The fis satisfy fit = fiqa for I = 1, m and vanish fod = m + 1, p which leads to
mny + Lfii1 for I=1,m—-1

3.3)
MmNyl for I=m,p.

Npk+1 =
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Figure 3. Surface magnetizatioms as a function of
2~2 for the relevant aperiodic sequence with= 4,
m =2 andr = 14, 1.2, 1, 0.8, 0.6, 0.4 from top to
bottom. The surface transition is first-order whes 1
and continuous with an essential singularity whea 1.

The last relation with = p can be iterated to give, = m’/ on a sequence with length
L = p/. The density of defects; /L = (m/p)’ vanishes asymptotically as*~* where

Inm

w= W (3.4)

is the wandering exponent of the sequence. It follows that the aperiodic modulation does
not change the critical point of the Ising quantum chain and its bulk critical behaviour. For

m > 1, the wandering exponent is positive and, according to Luck’s criterion, the sequence
gives a relevant perturbation. As a consequence one may expect a change in the surface
critical behaviour.

Some general results are known about the critical behaviour of the surface magnetization
in the case of a relevant aperiodic perturbation [23]. When the couplings are weakened near
to the surface (here for < 1), as shown in figure 3, the surface magnetization vanishes with
an essential singularityms ~ exp[—ct~*/A~®] where is the deviation from the critical
coupling andw the wandering exponent given in (3.4). When they are strengthenedL)
there is surface order at the bulk critical point and the critical magnetization vanishes at
re = 1 like

mse~ (r — 1)1/2w . (3.5)

Let us now calculate the oscillating amplitude of the critical surface magnetizasion
considering the recursion relation f@r(r) which is defined as

T(r)=SMe,r)—1=) r 2. (3.6)
j=1

Writing n; = n,4;, the sum overj is replaced by a double sum: one ovet= 0, co and
the other ovel = 1, p. Making use of (3.3) one obtains the one-parameter recursion
1

T =
) r2—1 r2m_1

+ pT (™). 3.7)

With 6 = Inr? ~ r —rc, we recover the linear renormalization (2.6). The recursion relation
(3.7) may be rewritten as (2.9) with 2 replaced byp and
FO=TE@D  o@)= "~ " 3 e (3.8)
¢ -1 ef-1 ' '

T Outside the critical point, a two-parameter recursion relation would be obtained.
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Figure 4. Amplitude of the critical magnetizatiomsc
as a function of the deviatiof = In 2 from r¢ = 1 for
09178 the relevant aperiodic sequence wjih= 4 andm = 2.
L . L Ne?r rc one obtains log-periodic oscillations around
0.004  0.008  0.012 0.016 Ay 2 — J/12In 2/7. The influence of the correction
8 terms in (3.12) are visible far from.

The remaindet,em(8), which contains the terms in(6) such thatpm* > 1, is ¢(0) itself
so that we have

o) 9k
Freg(e) = %
k=0 -~ pm
oo ' 3.9
Fing®) = ) p'o(m’6) = pFsing(mb) .
j=—o00
The singular part diverges ad(9)6* with x = —Inp/Inm and the critical
magnetization behaves as
msc~ (r —r )zlnp/lnm (3.10)

in agreement with (3.4) and (3.5).
Finally, with prem(6) = ¢(0) given by (3.8), the Fourier coefficients in (2.16) are now

given by
A — 1 /+°O du 1+Inpnfm 1 m
*Tnm e —1 ew—1

+ In p—2ris
§ : —1+ i (e—ku e—kmu)
In m

:p_mr<|np—2ms>§(Inp—ZﬂiS> (3.11)

plnm Inm Inm

where ¢(z) is the Riemann zeta function. The complete expression of the log-periodic
amplitude is given in appendix B.
Collecting these results, one obtains
SGe,r) = A@@-mrimn 2P =M =L o) (3.12)
2(p—1)
The amplitude of the surface magnetization showing the influence of the correction terms
is given in figure 4.

4. Conclusion

Some exact results have been obtained for the oscillating amplitude of the surface
magnetization of two quantum Ising chains with an aperiodic modulation of the couplings.
The two sequences lead to surface-extended perturbations which do not change the bulk
critical behaviour.
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For the marginal generalized Fredholm sequence, there is surface order at the critical
point for r > r. = /m. The critical magnetization vanishes @s— r.)%?. The deviation
from the critical magnetization, behavingdswith g, = 2(Inr/Inm)—1, has an oscillating
amplitude. Atrc, the magnetization vanishes @sInz)~Y/2. Whenr < rc, the transition is
second order with a continuously varying expongni % —(Inr/Inm) and a log-periodic
amplitude involving the gamma function of a complex argument.

With the relevant sequence, the surface is ordered at the critical pointfor, = 1.

The critical magnetization vanishes @s— )Y/ wherew = Inm/ In p is the wandering
exponent of the aperiodic sequence. The amplitude of the critical magnetization is log-
periodic. It contains a product of gamma and zeta functions of the same complex argument.
For r < 1, the surface magnetization vanishes with an essential singularity as a function
of ¢.

These aperiodic quantum chains may be considered as discrete realizations of the
Hilhorst—-van Leeuwen model [24] for which the couplings, = A(1 + g/k”), decay
continuously as a power of the distance from the surface. The decay expor@nesponds
to 1— w, wherew is the wandering exponent of the sequence.

For both sequences the leading surface critical behaviour is the same as for the Hilhorst—
van Leeuwen model [22,24] (with the correspondegce> Inr/Inm for the marginal
sequence [16]). The difference lies in the occurrence of log-periodic critical amplitudes for
the aperiodic systems, which is linked to the explicit breaking of the continuous dilatation
symmetry introduced by the modulations.

Finally, one may notice that for the Fredholm sequence, the critical magnetization does
not show any oscillating amplitude. The same is true for the Rudin—Shapiro sequence which
leads to a relevant perturbation [23]. Although discrete scale invariance is necessary for the
occurrence of log-periodic critical amplitudes, it is not sufficient.
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Appendix A. Splitting F'(0) into regular and singular parts

Inserting the series expansion (2.10) §g©) into (2.9) gives
0 . 0 .
F@O) =Y r 2> gm/o*. (A.1)
j=0 k=1

The order of the two sums can be changed when the sum gvehich is a geometric
series, converges. This occurs forPm* < 1, i.e. fork < n defined in (2.12). Rewriting
@(0) as

n—1

9©0) =Y @i + prem(®) (A.2)
k=1

one may splitF'(9) into two parts such that

n—1 00

ok ) )
FO) =Y 2 03 r Hgem(mi0) (A3)
= 1—r 2k =
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where the remaindegem(6) given in (2.12), contains that part of the expansion leading to
a divergent geometric series in (A.1). The last sum can be extended-framo +oo by
adding and subtracting

-1

3 grem(mi0) = Z 2i Z(p m Ik = —il_"i. (A.4)

. r—2mk
j=—00 j=1 k=n

In this way one obtains

00 k
o0
re= kX; ﬁ + Z Zj‘prem(mje) (A.5)
= j=—00

leading to (2.11).

Appendix B. Explicit results for the oscillating amplitudes

Let us write the Euler gamma function of a complex argumen,as: .
With the Fredholm sequence, When<1r < rc equations (2.15) and (2.22) lead to

1- Ing TS
cos Zns +ozv arctan—

/ 2 Inr
|I’] r+7T S (B.l)

A 1—r 2F 1 Inr2
°= 2Inr Inm
with [25]:

EARTAT-TH 2ms 27
Ps = <_|nm)11_£ +<(k+1)|nm—|nr2)
= (B.2)

21 1 In r2 N i 27s arctan 27s
oy = —— - -
*Tnm Inm = (k+DInm—Inr2 (k+Dlnm—Inr2

wherey is the digamma function.
Whenr < 1 equations (2.15) and (2.23) give
-2

re—1 In6
AB)= A 2 s COS| 2rs —— s
©) ot Inm ;p‘ < Slnm+a‘>

r2-1 Inr—2
Ag = r
Inm Inm
where now

—-1/2
Inr2\ & 2rs 2
s =T 1+(—="
P (Inm>g|: +<k|nm+|nr2>j|

_ 27ms 27s Inr— N i 27 arctan 2s
% “Inm Inm = kinm+Inr—2 kinm+Inr=2) |

With the relevant sequence, the Fourier expansion in (2.15) together with (3.11) gives

né
AB) = Ao+2p anZpsCOS< n+as+x5k)

— In In
Ag= P (NP (NP
plnm Inm Inm

A() = Ao + Z

(B.3)

(B.4)

(B.5)
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where

Ink
e =k~ NP/ g =2ms (B.6)

Inm
whereasp, anda, are now given by (B.4) with—2 replaced byp.
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