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Abstract. Log-periodic amplitudes of the surface magnetization are calculated analytically for
two Ising quantum chains with aperiodic modulations of the couplings. The oscillating behaviour
is linked to the discrete scale invariance of the perturbations. For the Fredholm sequence, the
aperiodic modulation is marginal and the amplitudes are obtained as functions of the deviation
from the critical point. For the other sequence, the perturbation is relevant and the critical
surface magnetization is studied.

1. Introduction

The possible occurrence of log-periodic critical amplitudes in systems with a discrete scale
invariance has been known since the early days of the renormalization group in statistical
mechanics [1–3].

Under length rescaling by a factor ofb, in the case of a one-parameter renormalization
group, the linearized recursion relation for the singular part of some observableF(θ) takes
the form

Fsing(θ) = 1

a
Fsing(µθ) (1.1)

wherea andµ depend on the dilatation factorb. Looking for a power-law solution under
the formFsing(θ) = A(θ)θx , one obtainsx = ln a/ ln µ andA(θ) = A(µθ). The condition
on the amplitude is satisfied by a periodic function of lnθ with period lnµ. When the
scale invariance is continuous,b remains arbitrary and cannot enter the amplitude which
then reduces to a constant. In contrast, with a discrete scale invariance a dependence
on the fixed scaling factor is allowed and the amplitude may be log-periodic. Such a
behaviour may be ascribed to complex exponents since a Fourier component may be written
as Re{θx+ix ′ } = cos(x ′ ln θ)θx .

Oscillating amplitudes indeed appear in systems with built-in discrete scale invariance.
One may mention low-dimensional dynamical models for the transition to chaos [4–8], wave
propagation on discrete fractals [9], superconductive transitions on Sierpinsky networks [10]
and spin systems on hierarchical lattices [11].

More recently, the same behaviour has also been observed in systems like fracture
in heterogeneous media [12], foreshock activity preceding major earthquakes [13] and
diffusion-limited aggregation [14], where the discrete scale invariance is not apparent. Such
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log-periodic modulations might be of great practical importance in refining the prediction
of earthquakes [13, 15].

The purpose of the present work is to study analytically such oscillating amplitudes
which appear in the surface critical behaviour of aperiodic Ising quantum chains with
Hamiltonian

H = − 1
2

∞∑
k=1

[σ z
k + λkσ

x
k σ x

k+1] λk = λrfk (1.2)

where theσks are Pauli spin operators,λ is the unperturbed coupling andr the modulation
amplitude of the couplings. The aperiodic sequence,fk = 0 or 1, is generated via an
inflation rule, leading to a discrete scale invariance for the modulation.

Previous work on spin systems involved a linear approximation for the recursion
relation (1.1), leading to errors of several decades in the oscillation amplitudes [11]. Here
the recursion can be treated without any approximation and we obtain exact results for the
log-periodic amplitude of the surface magnetization with two different modulations. We
first complete the study of a marginal sequence for which the leading critical behaviour is
known [16]. Then we consider a relevant aperiodic modulation, leading to a non-vanishing
surface magnetization at the bulk critical point.

2. Marginal surface magnetization: the generalized Fredholm sequence

The generalized Fredholm sequence, which is the characteristic sequence of the powers of
m, follows from substitutions on the lettersA, B andC:

A → S(A) = A B C C . . . C

B → S(B) = B C C C . . . C

C → S(C) = C C C C . . . C︸ ︷︷ ︸
m

.
(2.1)

With words of lengthm = 2, one recovers the usual Fredholm substitution [17]. Starting
with A and associatingfk = 0 to A and C and fk = 1 to B, for m = 2, one obtains the
sequence

0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0. . . . (2.2)

More generally,fk = 1 whenk = mp + 1 so thatnj = ∑j

k=1 fk satisfies the recursion
relationnml+q = nl+1 + 1 (q = 1, m; n1 = 0) which can be iterated to givenL ∼ ln L. The
density of perturbed couplings,nL/L, vanishes asymptotically: the Fredholm aperiodicity
is a surface-extended perturbation which does not affect the bulk critical properties of the
system [16]. The critical coupling, in particular, remains atλc = 1.

A heuristic scaling argument has been developed recently by Luck [18], extending
to aperiodic perturbations the Harris criterion for random systems [19]. According to
Luck’s criterion, the relevance of the perturbation is governed by the crossover exponent
φ = 1 + ν(ω − 1) which involves the correlation length exponentν (equal to 1 for the
d = 1 + 1 Ising model) and the wandering exponentω of the aperiodic sequence [20, 21].
For the Fredholm sequence,ω = 0 so thatφ = 0 and the perturbation is marginal: the
surface exponents vary continuously with the modulation amplituder [16].

The surface magnetizationms may be expressed as a series involving products of the
couplingsλk [22]

ms =
(

1 +
∞∑

j=1

j∏
k=1

λ−2
k

)−1/2

(2.3)
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which may be rewritten as

ms = [S(λ, r)]−1/2 S(λ, r) =
∞∑

j=0

λ−2j r−2nj n0 = 0 . (2.4)

With T (λ, r) = S(λ, r) − 1 − λ−2, the following recursion is obtained [16]:

(λ2 − 1)T (λ, r) = r−2(λ−2 − λ−2m) + r−2(λ2m − 1)T (λm, r) . (2.5)

In the recursion process,λ is changed intoR[λ] = λm. Defining θ = ln λ2, one obtains a
linear renormalization in the new variable:

R[θ ] = mθ . (2.6)

One may notice thatθ is a natural variable in the problem since, withλc = 1, it gives the
deviation from the critical point:

θ = ln

(
λ

λc

)2

'
(

λ

λc

)2

− 1 . (2.7)

With the new variable and

F(θ) = (eθ − 1)T (eθ/2, r) ϕ(θ) = r−2(e−θ − e−mθ) (2.8)

the recursion relation (2.5) reads

F(θ) = ϕ(θ) + r−2F(mθ) =
∞∑

j=0

r−2jϕ(mjθ) (2.9)

where the last expression follows from the iteration process.
Making use of the expansion

ϕ(θ) =
∞∑

k=1

ϕkθ
k ϕk = (−1)k

k!
r−2(1 − mk) (2.10)

after a straightforward calculation [3] reproduced in appendix A, one obtainsF(θ) as the
sum of a regular and a singular part:

F(θ) = Freg(θ) + Fsing(θ)

Freg(θ) =
∞∑

k=1

ϕkθ
k

1 − r−2mk

Fsing(θ) =
+∞∑

j=−∞
r−2jϕrem(mjθ) = r−2Fsing(mθ)

(2.11)

where

ϕrem(θ) =
∞∑

k=n

ϕkθ
k n > ln r2

ln m
. (2.12)

The singular part, which has the form given in (1.1) witha = r2 andµ = m, behaves
as

Fsing(θ) = A(θ)θx x = ln r2

ln m
(2.13)

where, according to equations (2.4), (2.5) and (2.7), (2.8), the exponentx is related to the
surface magnetization exponentβs through [16]

βs = 1 − x

2
= 1

2
− ln r

ln m
(2.14)
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whenFsing(θ) provides the leading contribution toF(θ), i.e. whenx < 1 (see below).
The amplitudeA(θ), which is log-periodic inθ with period lnm, may be written as the

Fourier expansion

A(θ) =
+∞∑

s=−∞
As exp

(
2π is

ln θ

ln m

)
= θ−x

+∞∑
j=−∞

r−2jϕrem(mjθ) . (2.15)

The last relation can be inverted and after some algebra, the Fourier coefficients are obtained
as [3]

As = 1

ln m

∫ +∞

0
du u−1−x−2π is/ ln mϕrem(u) . (2.16)

The system displays two different regimes depending on the value of the modulation
amplituder.

When r > rc = √
m, from (2.13) one obtainsx > 1 and the regular part in (2.11)

gives a leading contribution toF(θ) which is linear inθ . This linear term corresponds to
a θ -independent leading contribution toT (λ, r) according to (2.8) and

S(λ, r) = 2 + m − 1

r2 − m
+ A(θ)θx−1 + O(θ) . (2.17)

It follows that there is surface order at the critical point withmsc ∼ (r − rc)
1/2 and a

first-order surface transition [16]. The deviation from the critical magnetization behaves as
θx−1 with an oscillating amplitude for

√
m < r < m and is linear inθ above.

Whenr takes the formmn/2 so thatx is equal to the integern, a logarithmic behaviour
is obtained. This is the case in particular atrc when the surface transition changes from
first to second order. Let us writex = n− ε and extract fromFreg(θ) the termk = n which
is now singular, so that

F(θ) = F ′
reg(θ) − ϕnθ

n

ε ln m
+ A(θ)θn(1 − ε ln θ) . (2.18)

The leading contribution to the amplitudeA(θ) comes fromA0, the first term inϕrem(u)

leading to a singular contribution at the lower limit in (2.16). Introducing a cut-off atθ0,
one obtains

A0 ' ϕn

ln m

∫ θ0

0
du u−1+ε = ϕn

ln m

θε
0

ε
(2.19)

which finally gives

F(θ) = F ′
reg(θ) − ϕnθ

n ln θ

ln m
+ O(θn) . (2.20)

As a consequence, atrc the magnetization vanishes as

ms =
(

m ln m

m − 1

)1/2

(− ln θ)−1/2 + O(1) . (2.21)

When 1< r < rc, which corresponds to 0< x < 1, the remainder starts onn = 1 and
sinceϕ0 in (2.10) vanishes, we haveϕrem(θ) ≡ ϕ(θ). Insertingϕ(θ) given by (2.8) in the
amplitudeAs in (2.16), after an integration by parts, one obtains

As = r−2(e−mu − e−u)u−x−2π is/ ln m

ln r2 + 2π is

∣∣∣∣+∞

0

+
∫ +∞

0
du

r−2(me−mu − e−u)u−x−2π is/ ln m

ln r2 + 2π is

= 1 − r−2

ln r2 + 2π is
0

(
1 + ln r−2 − 2π is

ln m

)
.

(2.22)
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Figure 1. Variation of the leading amplitudeA0 with
the modulation amplituder for the Fredholm sequence
with m = 2. It diverges atrc = √

2 when the
surface transition changes from second to first order
(see equation (2.19)).

Figure 2. Log-periodic amplitudeA(θ) as a function
of the deviation from the critical coupling,θ = ln λ2,
for the Fredholm sequence withm = 2. The oscillation
amplitude is quickly decreasing whenr increases(r =
0.5, 0.6, 0.7, 0.8).

The oscillating amplitudes involve the Euler gamma function of a complex argument0(z).
In this regime, as well as for smaller values ofr, the behaviour of the surface magnetization
is governed byFsing(θ). It gives a contributionθx−1 to S which is divergent at the critical
point. The surface transition is second order and the magnetization exponent is given by
(2.14).

Finally whenr < 1, x < 0, n = 0 and once moreϕrem(θ) ≡ ϕ(θ). The leading power
θx has an oscillating amplitude and one obtains

As = r−2

ln m

∫ +∞

0
du(e−u − e−mu)u−1−x−2π is/ ln m

= r−2 − 1

ln m
0

(
ln r−2 − 2π is

ln m

)
.

(2.23)

Explicit expressions for the oscillating amplitudes are given in appendix B. The
behaviour ofA0 as a function ofr for the Fredholm sequence withm = 2 is shown
in figure 1 whereas the log-periodic oscillations are shown in figure 2 for different values
of the modulation amplitude.

3. Critical surface magnetization with a relevant aperiodic sequence

We now consider a sequence generated through substitution on the digits 1 and 0 with

1 → S(1) =
m︷ ︸︸ ︷

1 1. . . 1 0. . . 0

0 → S(0) = 0 0 0. . . 0 0 0︸ ︷︷ ︸
p

. (3.1)

Starting on 1 withp = 3 and m = 2, the substitution process generates the following
sequence:

1 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0. . . . (3.2)

The fks satisfyfpk+l = fk+1 for l = 1, m and vanish forl = m + 1, p which leads to

npk+l =
{

mnk + lfk+1 for l = 1, m − 1

mnk+1 for l = m, p .
(3.3)
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Figure 3. Surface magnetizationms as a function of
λ−2 for the relevant aperiodic sequence withp = 4,
m = 2 and r = 1.4, 1.2, 1, 0.8, 0.6, 0.4 from top to
bottom. The surface transition is first-order whenr > 1
and continuous with an essential singularity whenr < 1.

The last relation withl = p can be iterated to givenL = mj on a sequence with length
L = pj . The density of defectsnL/L = (m/p)j vanishes asymptotically asLω−1 where

ω = ln m

ln p
(3.4)

is the wandering exponent of the sequence. It follows that the aperiodic modulation does
not change the critical point of the Ising quantum chain and its bulk critical behaviour. For
m > 1, the wandering exponent is positive and, according to Luck’s criterion, the sequence
gives a relevant perturbation. As a consequence one may expect a change in the surface
critical behaviour.

Some general results are known about the critical behaviour of the surface magnetization
in the case of a relevant aperiodic perturbation [23]. When the couplings are weakened near
to the surface (here forr < 1), as shown in figure 3, the surface magnetization vanishes with
an essential singularity:ms ∼ exp[−ct−ω/(1−ω)] where t is the deviation from the critical
coupling andω the wandering exponent given in (3.4). When they are strengthened(r > 1)

there is surface order at the bulk critical point and the critical magnetization vanishes at
rc = 1 like

msc ∼ (r − 1)1/2ω . (3.5)

Let us now calculate the oscillating amplitude of the critical surface magnetization† by
considering the recursion relation forT (r) which is defined as

T (r) = S(λc, r) − 1 =
∞∑

j=1

r−2nj . (3.6)

Writing nj = npk+l , the sum overj is replaced by a double sum: one overk = 0, ∞ and
the other overl = 1, p. Making use of (3.3) one obtains the one-parameter recursion

T (r) = 1

r2 − 1
− m

r2m − 1
+ pT (rm) . (3.7)

With θ = ln r2 ∼ r − rc, we recover the linear renormalization (2.6). The recursion relation
(3.7) may be rewritten as (2.9) withr−2 replaced byp and

F(θ) = T (eθ/2) ϕ(θ) = 1

eθ − 1
− m

emθ − 1
=

∞∑
k=0

ϕkθ
k . (3.8)

† Outside the critical point, a two-parameter recursion relation would be obtained.
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Figure 4. Amplitude of the critical magnetizationmsc

as a function of the deviationθ = ln r2 from rc = 1 for
the relevant aperiodic sequence withp = 4 andm = 2.
Near rc one obtains log-periodic oscillations around
A

−1/2
0 = √

12 ln 2/π . The influence of the correction
terms in (3.12) are visible far fromrc.

The remainderϕrem(θ), which contains the terms inϕ(θ) such thatpmk > 1, is ϕ(θ) itself
so that we have

Freg(θ) =
∞∑

k=0

ϕkθ
k

1 − pmk

Fsing(θ) =
+∞∑

j=−∞
pjϕ(mjθ) = pFsing(mθ) .

(3.9)

The singular part diverges asA(θ)θx with x = − ln p/ ln m and the critical
magnetization behaves as

msc ∼ (r − rc)
1
2 ln p/ ln m (3.10)

in agreement with (3.4) and (3.5).
Finally, with ϕrem(θ) ≡ ϕ(θ) given by (3.8), the Fourier coefficients in (2.16) are now

given by

As = 1

ln m

∫ +∞

0
du u−1+ ln p−2π is

ln m

(
1

eu − 1
− m

emu − 1

)
= 1

ln m

∞∑
k=1

∫ +∞

0
du u−1+ ln p−2π is

ln m (e−ku − me−kmu)

= p − m

p ln m
0

(
ln p − 2π is

ln m

)
ζ

(
ln p − 2π is

ln m

)
(3.11)

where ζ(z) is the Riemann zeta function. The complete expression of the log-periodic
amplitude is given in appendix B.

Collecting these results, one obtains

S(λc, r) = A(θ)θ− ln p/ ln m + 2p − m − 1

2(p − 1)
+ O(θ) . (3.12)

The amplitude of the surface magnetization showing the influence of the correction terms
is given in figure 4.

4. Conclusion

Some exact results have been obtained for the oscillating amplitude of the surface
magnetization of two quantum Ising chains with an aperiodic modulation of the couplings.
The two sequences lead to surface-extended perturbations which do not change the bulk
critical behaviour.
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For the marginal generalized Fredholm sequence, there is surface order at the critical
point for r > rc = √

m. The critical magnetization vanishes as(r − rc)
1/2. The deviation

from the critical magnetization, behaving astβ
′
s with β ′

s = 2(ln r/ ln m)−1, has an oscillating
amplitude. Atrc, the magnetization vanishes as(− ln t)−1/2. Whenr < rc, the transition is
second order with a continuously varying exponentβs = 1

2 − (ln r/ ln m) and a log-periodic
amplitude involving the gamma function of a complex argument.

With the relevant sequence, the surface is ordered at the critical point forr > rc = 1.
The critical magnetization vanishes as(r − rc)

1/(2ω) whereω = ln m/ ln p is the wandering
exponent of the aperiodic sequence. The amplitude of the critical magnetization is log-
periodic. It contains a product of gamma and zeta functions of the same complex argument.
For r < 1, the surface magnetization vanishes with an essential singularity as a function
of t .

These aperiodic quantum chains may be considered as discrete realizations of the
Hilhorst–van Leeuwen model [24] for which the couplings,λk = λ(1 + g/ky), decay
continuously as a power of the distance from the surface. The decay exponenty corresponds
to 1− ω, whereω is the wandering exponent of the sequence.

For both sequences the leading surface critical behaviour is the same as for the Hilhorst–
van Leeuwen model [22, 24] (with the correspondenceg → ln r/ ln m for the marginal
sequence [16]). The difference lies in the occurrence of log-periodic critical amplitudes for
the aperiodic systems, which is linked to the explicit breaking of the continuous dilatation
symmetry introduced by the modulations.

Finally, one may notice that for the Fredholm sequence, the critical magnetization does
not show any oscillating amplitude. The same is true for the Rudin–Shapiro sequence which
leads to a relevant perturbation [23]. Although discrete scale invariance is necessary for the
occurrence of log-periodic critical amplitudes, it is not sufficient.
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Appendix A. Splitting F (θ) into regular and singular parts

Inserting the series expansion (2.10) forϕ(θ) into (2.9) gives

F(θ) =
∞∑

j=0

r−2j
∞∑

k=1

ϕkm
jkθk . (A.1)

The order of the two sums can be changed when the sum overj , which is a geometric
series, converges. This occurs forr−2mk < 1, i.e. for k < n defined in (2.12). Rewriting
ϕ(θ) as

ϕ(θ) =
n−1∑
k=1

ϕkθ
k + ϕrem(θ) (A.2)

one may splitF(θ) into two parts such that

F(θ) =
n−1∑
k=1

ϕkθ
k

1 − r−2mk
+

∞∑
j=0

r−2jϕrem(mjθ) (A.3)
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where the remainder,ϕrem(θ) given in (2.12), contains that part of the expansion leading to
a divergent geometric series in (A.1). The last sum can be extended from−∞ to +∞ by
adding and subtracting

−1∑
j=−∞

r−2jϕrem(mjθ) =
+∞∑
j=1

r2j
∞∑

k=n

ϕkm
−jkθk = −

∞∑
k=n

ϕkθ
k

1 − r−2mk
. (A.4)

In this way one obtains

F(θ) =
∞∑

k=1

ϕkθ
k

1 − r−2mk
+

+∞∑
j=−∞

r−2jϕrem(mjθ) (A.5)

leading to (2.11).

Appendix B. Explicit results for the oscillating amplitudes

Let us write the Euler gamma function of a complex argument asρseiαs .
With the Fredholm sequence, when 1< r < rc equations (2.15) and (2.22) lead to

A(θ) = A0 +
∞∑

s=1

(1 − r−2)ρs√
ln2 r + π2s2

cos

(
2πs

ln θ

ln m
+ αs − arctan

πs

ln r

)
A0 = 1 − r−2

2 lnr
0

(
1 − ln r2

ln m

) (B.1)

with [25]:

ρs = 0

(
1 − ln r2

ln m

) ∞∏
k=0

[
1 +

(
2πs

(k + 1) ln m − ln r2

)2
]−1/2

αs = 2πs

ln m
ψ

(
1 − ln r2

ln m

)
+

∞∑
k=0

[
2πs

(k + 1) ln m − ln r2
− arctan

(
2πs

(k + 1) ln m − ln r2

)](B.2)

whereψ is the digamma function.
Whenr < 1 equations (2.15) and (2.23) give

A(θ) = A0 + 2
r−2 − 1

ln m

∞∑
s=1

ρs cos

(
2πs

ln θ

ln m
+ αs

)
A0 = r−2 − 1

ln m
0

(
ln r−2

ln m

) (B.3)

where now

ρs = 0

(
ln r−2

ln m

) ∞∏
k=0

[
1 +

(
2πs

k ln m + ln r−2

)2
]−1/2

αs = 2πs

ln m
ψ

(
ln r−2

ln m

)
+

∞∑
k=0

[
2πs

k ln m + ln r−2
− arctan

(
2πs

k ln m + ln r−2

)]
.

(B.4)

With the relevant sequence, the Fourier expansion in (2.15) together with (3.11) gives

A(θ) = A0 + 2
p − m

p ln m

∞∑
k=1

ηk

∞∑
s=1

ρs cos

(
2π

ln θ

ln m
+ αs + χsk

)
A0 = p − m

p ln m
0

(
ln p

ln m

)
ζ

(
ln p

ln m

) (B.5)
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where

ηk = k− ln p/ ln m χsk = 2πs
ln k

ln m
(B.6)

whereasρs andαs are now given by (B.4) withr−2 replaced byp.
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